

Precise Measurement of the Lifetime of Hydrogen Hyperisotopes: ${}^3_\Lambda$ H and ${}^4_\Lambda$ H

Elena Botta

INFN - Sezione di Torino and Torino University - Physics Department

International Workshop on Physics at the Extended Hadron Experimental Facility of J-PARC KEK Tokai Campus, March 5-6, 2016

Outline

the physics case

 measurements with the (π⁻, K⁰) reaction at J-PARC

detailed situation

counter experiments

${}^{3}_{\Lambda}H$ lifetime measurements

year	ref.	method	lab./react	τ (ps)
1963	Block, St. Cergue p.63 [10]	He BC	K⁻, LBL Bevatron	105 ⁺²⁰ -18
1964	Prem, PR 136 B1803 [11]	emuls.	K⁻, BNL AGS	90 +220 -40
1965	Kang, PR 139 B401 [12]	emuls.	K⁻, BNL AGS	340 ⁺⁸²⁰ -140
1968	Keyes, PRL 20 819 [13]	He BC	K⁻, ANL ZGS	232 ⁺⁴⁵ -34
1968	Phillips PRL 20 1383 [14]	emuls.	K⁻, BNL AGS	274 ⁺¹¹⁰ ₋₇₂
1969	Phillips PR 180 1307 [15]	emuls.	K⁻, BNL AGS	285 ⁺¹¹⁴ ₋₇₅
1970	Bohm, NPB 16 46 [16]	emuls.	K⁻, CERN PS	128 ⁺³⁵ -26
1970	Keyes, PRD 1 66 [17]	He BC	K⁻, ANL ZGS	264 ⁺⁸⁴ ₋₅₂
1973	Keyes, NPB 67 269 [18]	He BC	K⁻, ANL ZGS	246 ⁺⁶² ₋₄₁
1992 (A)	Avramenko, NPA 547 95c [19]	ions	He, Li on C, Dubna	240 ⁺¹⁷⁰ ₋₁₀₀
2010	STAR, Science 328, 58 [20]	н	Au, BNL RHIC	182 ⁺⁸⁹ -45 ± 27
2013 (B)	STAR, NPA 904, 551c [21]	н	Au, BNL RHIC	123 ⁺²⁶ -22 ± 10
2013	HypHI, NPA 913, 170 [22]	lons	Li on C, GSI SIS	183 ⁺⁴² -32 ± 37
2014	Rappold et al., PLB 728, 543	analysis	no (A) and (B)	216 ⁺¹⁹ -16
2016	ALICE, PLB 754 360 [23]	н	Pb CERN LHC	181 +54 ₋₃₈ ± 33 🗲

detailed situation

${}^{3}_{\Lambda}H$ lifetime measurements

year	ref.	method	lab./react	τ (ps)	events
1963	Block, St. Cergue p.63 [10]	He BC	K⁻, LBL Bevatron	105 ⁺²⁰ -18	29f + 7r (2b&3b)
1964	Prem, PR 136 B1803 [11]	emuls.	K⁻, BNL AGS	90 ⁺²²⁰ -40	3f+1r (2b)
1965	Kang, PR 139 B401 [12]	emuls.	K⁻, BNL AGS	340 +820 -140	5f+18r (2b&3b)
1968	Keyes, PRL 20 819 [13]	He BC	K⁻, ANL ZGS	232 ⁺⁴⁵ -34	35f+17r (2b&3b)
1968	Phillips PRL 20 1383 [14]	emuls.	K⁻, BNL AGS	274 ⁺¹¹⁰ ₋₇₂	24f+99r (2b&3b)
1969	Phillips PR 180 1307 [15]	emuls.	K⁻, BNL AGS	285 ⁺¹¹⁴ ₋₇₅	14f+89r (2B&3b)
1970	Bohm, NPB 16 46 [16]	emuls.	K ⁻ , CERN PS	128 ⁺³⁵ -26	120r+34f (3b)
1970	Keyes, PRD 1 66 [17]	He BC	K ⁻ , ANL ZGS	264 ⁺⁸⁴ ₋₅₂	27f(170MeV/c 2b)
1973	Keyes, NPB 67 269 [18]	He BC	K ⁻ , ANL ZGS	246 ⁺⁶² ₋₄₁	40f (2b&3b)
1992 (A)	Avramenko, NPA 547 95c [19]	ions	He, Li on C, Dubna	240 ⁺¹⁷⁰ -100	few events (2b)
2010	STAR, Science 328, 58 [20]	н	Au, BNL RHIC	182 ⁺⁸⁹ -45 ± 27	(2b)
2013 (B)	STAR, NPA 904, 551c [21]	н	Au, BNL RHIC	123 ⁺²⁶ -22 ± 10	(2b) > stat. ?
2013	HypHI, NPA 913, 170 [22]	lons	Li on C, GSI SIS	183 ⁺⁴² -32 ± 37	(2b)
2014	Rappold et al., PLB 728, 543	analysis	no (A) and (B)	216 ⁺¹⁹ ₋₁₆	
2016	ALICE, PLB 754 360 [23]	н	Pb CERN LHC	181 ⁺⁵⁴ -38 ± 33	(2b)

FRC

${}^{3}_{\Lambda}H$ lifetime calculations

[33] M. Rayet, R.H. Dalitz N.Cim A 46 (1966) 786

- [34] M. Ram, W.Williams NP B 28 (1971) 566
- [35] H. Mansour, K. Higgins N. Cim A 51 (1979) 180
- [36] N. Kolesnikov, V. Kopylov, Sov. Phys. J 31 (1988) 210
- [37] J.G. Congleton, J. Phys G 18 (1992) 339
- [38] H. Kamada et al., PRC 57 (1998) 1595

${}^{4}_{\Lambda}H$ lifetime measurements

year	ref.	method	lab./react	τ (ps)
1962	Crayton, HEP CERN, p. 460 [26]	emuls.	K ⁻ , LBL Bevatron	118 ⁺⁶⁵ -30
1964	Prem, PR 136 B1803 [11]	emuls.	K ⁻ , BNL AGS	180 ⁺²⁵⁰ -70
1965	Kang, PR 139 B401 [12]	emuls.	K ⁻ , BNL AGS	360 ⁺⁴⁹⁰ ₋₁₃₀
1969	Phillips PR 180 1307 [15]	emuls.	K ⁻ , BNL AGS	268 ⁺¹⁶⁶ -107
1991 (C)	Szymanski PRC 43 849 [27]	counter	K ⁻ on ⁶ Li, BNL AGS	160 ± 20
1992 ('89)	Avramenko, NPA 547 95c [19]	ions	He, Li on C, Dubna	220 ⁺⁵⁰ -40
1995	Outa, NPA 585 109c [28]	counter	K- _{stop} on ⁴ He, KEK PS	194 ⁺²⁴ -26
2013	HypHI, NPA 913, 170 [22]	ions	Li on C, GSI SIS	140 ⁺⁴⁸ -33 ±35
2014	Rappold et al., PLB 728, 543	analysis	no (C)	192 ⁺²⁰ ₋₁₈

${}^{4}_{\Lambda}$ H lifetime calculations

K. Itonaga, T. Motoba, PTPS 185 (2010) 252 (A=4-209) no 2N-induced NMWD $\tau({}^4_\Lambda H)$ = 264.1 ps

${}^{\mathbf{4}}_{\Lambda}\mathbf{H}$ lifetime measurements

year	ref.	method	lab./react	τ (ps)	events
1962	Crayton, HEP CERN, p. 460 [26]	emuls.	K ⁻ , LBL Bevatron	118 ⁺⁶⁵ -30	52f
1964	Prem, PR 136 B1803 [11]	emuls.	K ⁻ , BNL AGS	180 ⁺²⁵⁰ ₋₇₀	3f + 4r
1965	Kang, PR 139 B401 [12]	emuls.	K ⁻ , BNL AGS	360 ⁺⁴⁹⁰ ₋₁₃₀	5f + 40r
1969	Phillips PR 180 1307 [15]	emuls.	K ⁻ , BNL AGS	268 ⁺¹⁶⁶ ₋₁₀₇	10f + 5r
1991 (C)	Szymanski PRC 43 849 [27]	counter	K ⁻ on ⁶ Li, BNL AGS	160 ± 20	
1992 ('89)	Avramenko, NPA 547 95c [19]	ions	He, Li on C, Dubna	220 ⁺⁵⁰ -40	22
1995	Outa, NPA 585 109c [28]	counter	K- _{stop} on ⁴He, KEK PS	194 ⁺²⁴ -26	
2013	HypHI, NPA 913, 170 [22]	ions	Li on C, GSI SIS	140 ⁺⁴⁸ -33 ±35	
2014	Rappold et al., PLB 728, 543	analysis	no (C)	192 ⁺²⁰ -18	

how to measure $\tau({}^{3}_{\Lambda}H, {}^{4}_{\Lambda}H)$?

- counter experiments technique, MM spectra, no hyperfragment
- direct time delayed spectra technique (t_{decay} t_{react})
- production reaction detection to identify the hypernucleus (MM) and measure t_{react} (HI/Ions) \rightarrow trigger, apparatus ($\epsilon, \Delta\Omega$)
- coincidence detection of MWD products (2b&3b) (t_{decay})
 - \rightarrow coincidence apparatus ($\epsilon', \Delta \Omega'$)
- good MM spectroscopy resolution
- start and stop time counters with very good time resolution
- energy measurement for decay charged particles (π , p)
- background reactions ($\Lambda_{q.f.}$ production and decay, ...) rejection
- prompt reaction for system time response function (σ ~50 ps)

¹²C target

H.Bhang et al., Jou. Kor. Phys. Soc., 59 (2011) 1461,

${}^{\mathbf{3},\mathbf{4}}{}_{\Lambda}\mathbf{H}$ production reactions on He targets

decay reactions: $K_{s}^{0} \rightarrow \pi^{+} + \pi^{-} (\pi^{+}: >650 \text{ MeV/c}, 2^{\circ}-14^{\circ} \pi^{-}: 10-120 \text{ MeV/c}, 60^{\circ}-100^{\circ})$ ^{3,4}_ΛH→ π^{-} + X (2b & 3b) (0-133 MeV/c, 0^{\circ}-180^{\circ}) not always at rest

SKS cut $K^{0} \rightarrow \pi^{+} + (\pi^{-})$

Phase space simulation: ${}^{3}_{\Lambda}H$

 $\pi^{-} + {}^{3}\text{He} \rightarrow K^{0} + {}^{3}_{\Lambda}\text{H}; \qquad K^{0}_{s} \rightarrow \pi^{+} + \pi^{-}$

K⁰ selection

SKS cut

π⁺: p>650 MeV/c, 2°-14°

SKS cut $K^0_{s} \rightarrow \pi^+ + \pi^-$

40 20

0^L

0.02

0.04

0.06

0.08

0.1

0.12

0.14 π⁻ momentum (GeV/c)

0.16

Letter of Intent for precise measurement of the lifetime of Hydrogen Hyperisotopes ${}^{3}_{\Lambda}$ H and ${}^{4}_{\Lambda}$ H

Michelangelo Agnello^{1,2}, Elena Botta^{2,3}, Tullio Bressani², Stefania Bufalino^{1,2}, Alessandro Feliciello², Tomofumi Nagae⁴, Toshiyuki Takahashi⁵, Hirokazu Tamura⁶

¹ Politecnico di Torino, Dipartimento di Scienze Applicate e Tecnologia, Corso Duca degli Abruzzi 24, Torino Italy

² INFN - Sezione di Torino, Via P. Giuria 1, Torino Italy

³ Università di Torino, Dipartimento di Fisica, Via P. Giuria 1, Torino Italy

⁴ Department of Physics, Kyoto University, Kitashirakawa, Sakyo-ku, Kyoto, Japan

⁵ Institute of Particle and Nuclear Studies (IPNS), High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801, Japan

⁶ Department of Physics, Tohoku University, Sendai 980-8578, Japan

We are planning to propose an experiment to precisely measure the lifetimes of ${}^{3}_{\Lambda}$ H and ${}^{4}_{\Lambda}$ H using the 3,4 He(π^{-}, K^{0}) ${}^{3,4}_{\Lambda}$ H reaction at the K1.1 beamline by employing the SKS spectrometer and scintillation counters around the target.

K⁰ spectrometer conceptual design

Range detector	impinging decay particle momentum $ ightarrow K^0{}_s$ momentum		
	PId (π , K, p), $\Delta\Omega \sim 2\pi$, scintillator,		
	\sim 10 cm total thickness (slabs: 1-3 mm), p _{π} >70-75 MeV/c, 4 modules		
Drift chambers	impinging decay particle direction (2 3-d points, ~3 cm spacing)		
	250-300 μm resolution (σ), $\Delta\Omega \sim 2\pi$		
Scintillator barrel	decay time measurement (formation time from beam scintillator)		
	PId		
	4-5 mm thickness, 12 slabs, $\Delta\Omega\sim 2\pi$		
Target	LHe, ~7.5 cm length		

K1.1 @

Fxtension

QQDQQ

MM(^{3,4}_{Λ}H) resolution with (π -, K⁰) reaction

MM(${}^{3,4}_{\Lambda}$ H): ~**3** MeV FWHM B_{Λ}(${}^{4}_{\Lambda}$ H) = 2.04 MeV, B_{Λ}(${}^{3}_{\Lambda}$ H) = 0.13 MeV

p(π - beam): ~ 0.1% @ 1.05 GeV/c \rightarrow ~1 MeV/c FWHM

p(K⁰): contributions from p(π^+ SKS), p(π^- K⁰ spectr.& DC) π^+ (~700 MeV/c) SKS: ~ 0.1% FWHM \rightarrow ~ 1 MeV/c π^- (80-140 MeV/c) K⁰ spectr. : ~ 3-3.5 MeV/c FWHM $\theta(45^{\circ}-100^{\circ})$ DC: <= 100 mrad FWHM p(K⁰): 3.5-4 MeV/c FWHM

 \rightarrow MM(^{3,4}_AH): ~**3.2** MeV FWHM

delayed time spectrum in coincidence with bound states

Expected events

Total number of π - on target: N_{π}= 5•10¹³

 $\begin{aligned} & \mathsf{Yield}({}^{4}{}_{\Lambda}\mathsf{H}) = \mathsf{N}_{\pi} \, \mathsf{N}_{\mathsf{target}}/4 \, \mathsf{N}_{\mathsf{A}} \, \mathsf{d}\sigma/\mathsf{d}\Omega \, \Delta\Omega \, \varepsilon_{\mathsf{sp}} \, \varepsilon_{\mathsf{an}} = 1.5 \bullet 10^{4} \\ & \mathsf{N}_{\mathsf{target}} = 1 \, \mathsf{g/cm}^{2} \\ & \mathsf{d}\sigma/\mathsf{d}\Omega(\pi^{-}, \mathsf{K}^{0}) = \mathsf{d}\sigma/\mathsf{d}\Omega(\pi^{+}, \mathsf{K}^{+}) \, \mathsf{F}_{\mathsf{PS}} = 10 \, \mu\mathsf{b}/\mathsf{sr}(4^{\mathsf{o}}) \bullet 0.05 \\ & \mathsf{F}_{\mathsf{PS}} = (\pi \text{-} \operatorname{in} 2^{\mathsf{o}} \text{-} 14^{\mathsf{o}}, \mathsf{p} \text{>} 650 \, \mathsf{MeV/c}, \, \mathsf{from} \, \mathsf{K}^{0} \, \mathsf{in} \, 2^{\mathsf{o}} \text{-} 14^{\mathsf{o}}) / (\mathsf{K}^{0} \, \mathsf{in} \, 2^{\mathsf{o}} \text{-} 14^{\mathsf{o}}) \\ & \Delta\Omega = \Delta\Omega(\mathsf{SKS}) \, \Delta\Omega(\mathsf{K}^{\mathsf{o}} \, \mathsf{spec.}) = \frac{1}{2} \, \Delta\Omega(\mathsf{SKS}) \\ & \varepsilon_{\mathsf{sp}} \, \varepsilon_{\mathsf{an}} = \mathsf{BR}(\mathsf{K}^{\mathsf{o}} \text{-} \mathsf{K}^{\mathsf{o}}_{\mathsf{s}}) \, \mathsf{BR}(\mathsf{K}^{\mathsf{o}}_{\mathsf{s}} \text{-} \pi^{+} \, \pi^{-}) \, \varepsilon_{\mathsf{det}} \, \varepsilon_{\mathsf{an}} \end{aligned}$

Yield(⁴_{Λ}H π - MWD) = Yield(⁴_{Λ}H) BR $\Delta \Omega_{\pi} \varepsilon_{\pi} \varepsilon_{an}$ ~ 2•10³ 2-b (BR=0.49 Tamura PRC 40 (1989) R479) ~ 5•10² 3-b (BR=0.22)

 $\varepsilon_{\pi} = \varepsilon_{det} \cdot (MWD \pi - in K^0 \text{ spec. mom acceptance})/(MWD \pi -)$

Yield(${}^{3}_{\Lambda}$ H) ~ 1.5 • 10⁴ = 1.0 • 10⁴ d σ /d $\Omega(\pi^{+}, K^{+}) = 5 \,\mu$ b reasonable assumption Yield(${}^{3}_{\Lambda}$ H π - MWD) ~ 6 • 10² 2-b (BR=0.25 Bertrand NPB 16 (1970) 77) ~ 6 • 10² 3-b (BR=0.40)

Backgrounds in delayed time spectra

- Ambiguities due to 2 π in K⁰ spectrometer <= 1% (topological selections, inv. mass selections)
- Λ_{qf} production and decay: $\pi^- + p \rightarrow K^0 + \Lambda$ $K^0_s \rightarrow \underline{\pi^+} + \underline{\pi^-}$ $\Lambda \rightarrow p + \underline{\pi^-}$ in flight

momentum distribution

assumption: Λ_{qf} production ~ 10* ${}^{4}_{\Lambda}$ H production peak in MM unbound region up to 15 MeV (SKS acceptance) Λ_{qf} MWD π^{-} : flat distribution up to ~ 160-170 MeV/c

⁴_ΛH (B_Λ= 2.04 MeV) ≤10% contamination in the MM selection 2b decay: peak 132.9 MeV/c; contamination ≤ 1% 3b decay: continuum; contamination ≤ 20% → fit of delayed time spectrum with two exponentials (one with $\tau = \tau$ (Λ_{free}))

³_ΛH (B_Λ= 0.13 MeV) ~50% contamination in the MM selection
 2b decay: peak ~114 MeV/c; contamination ~ 10%, fit with two exponentials
 3b decay: continuum; contamination ~ 50% (signal~bckgd) → fit of delayed time spectrum with two exponentials

- complete comprehension of the lightest strange nuclear system elementary ΛN interaction
- simplest Λ nuclear system (I=0): ${}^{3}_{\Lambda}$ H
- B_{Λ} : 0.13 ± 0.05 (± 0.05) MeV $\rightarrow \tau({}^{3}_{\Lambda}H) \sim \tau(\Lambda_{free})$
- B_{Λ} determination: emulsion experiment; $J^{P}=1/2^{+}$
- $\tau({}^{3}_{\Lambda}H)$: not definite experimental determination
- decay widths, R₃: emulsions, no recent measurements
- B_{Λ} : no γ -ray spectroscopy
 - (e, e' K⁺) spectroscopy: Dohrman (2004), feasibility, 4 MeV FWHM; resolution improved to FWHM ~500 keV; new measurements @JLab?
 - (e, e' K⁺) WD spectroscopy: MAMI ($\pm 0.01_{st} \pm 0.09_{sys}$), only ${}^{4}_{\Lambda}$ H
 - HIc: GSI HypHI, WD spectroscopy, IM: σ ~5 MeV/c²
- $R_3 = \Gamma_{\pi-2b} / \Gamma_{\pi-tot}, \Gamma_{\pi 0} \dots ?!$

Kamada PRC 57 (1998) 1595 && A BR

 $^{3}{}_{\Lambda}H \rightarrow d+p+\pi$ - and $d+n+\pi^{0}$: $\Gamma/\Gamma_{\Lambda}= 0.619$ $\Gamma_{tot}/\Gamma_{\Lambda}= 1.03$

 $\Lambda \rightarrow p + \pi - BR: 0.639$ $\rightarrow n + \pi^0 BR: 0.358$

 ${}^{3}_{\Lambda}H \rightarrow d+p+\pi-BR: 0.619 * 0.639 \sim 0.4$

present experimental knowledge

				-
		B_{Λ} (MeV)	τ (ps)	
CSB	Λ		263.2±2.0 CPC 38(9) (2104) 090001	
	$^{3}\Lambda H$	0.13±0.05±0.04 Juric NPB 52 (1973) 1	216 ⁺¹⁹ ₋₁₆ RNC	
	⁴ _A H	2.08±0.08 Juric NPB 52 (1973) 1 2.04±0.04±0.04 Davis, NPA 754 (2005) 1 2.12±0.01±0.09 Esser PRL 114 (2015) 232501	192 ⁺²⁰ -18 RNC	CSB
	⁴ _A He	2.39±0.03±0.04 Davis, NPA 754 (2005) 1 $\Delta B(1^+ \rightarrow 0^+) = 1.406\pm0.002\pm$ 0.003 (Yamamoto arXiv:a508.00376)	250±18 RNC	
	⁵ _Λ He	3.12±0.02 Davis, NPA 754 (2005) 1	273±10 RNC	

puzzling situation: A=1, 3, 4, 5 lifetime A=4 I_3 =-1/2 vs I_3 =1/2

Β_Λ &&

lifetime

